Beam Optics & Beam Size on Target

J.A. Johnstone & D.E. Johnson

Modular LBNE Lattice Design

- The line is comprised of 4 distinct functional modules (excluding the FODO cells):
 - S1: matching from MI \rightarrow NuMI \rightarrow LBNE FODO cells including η_{y} killing;
 - S2: horizontal dispersion suppression plus a 150 mr achromatic down-bend;
 - 53: an achromatic 50 mr upbend;
 - S4: the FF to the target.

Beam size on the target is accomplished solely by tuning the Final Focus section matching quads.

Final Focus Matching Quads

Beam size is adjusted almost exclusively by tuning QF1, QD1, & QD2 — the triplet gradients change very little.

In the configuration shown the beam size can be adjusted from σ < 1.0 mm \rightarrow 1.6 mm over the entire range $60 \rightarrow 120$ GeV/c before the QD2 gradient becomes excessive (~20 T/m).

Replacing the 5' QD2 with a 10' magnet removes the bottleneck & σ = 3.0 mm is achievable (possibly larger).

120 GeV/c & $\sigma = 3.0 \text{ mm}$

Recycler High- β Insertion

RR30 : β^* = 200.m; η^* = 0.00m : β_{max} = 302m

 Ω

over to Dave ...